Перевод: с русского на все языки

со всех языков на русский

как показывает название

  • 1 как показывает название

    This publication, as the title implies, is primarily concerned with...

    Русско-английский научно-технический словарь переводчика > как показывает название

  • 2 как показывает название

    This publication, as the title implies, is primarily concerned with...

    Русско-английский научно-технический словарь переводчика > как показывает название

  • 3 как показывает название

    General subject: as the title indicates (...) (...; книги и т. п.), as the title suggests (...) (...; книги и т. п.)

    Универсальный русско-английский словарь > как показывает название

  • 4 как показывает название ...

    Makarov: (книги и т. п.) as the title indicates, (книги и т. п.) as the title suggests

    Универсальный русско-английский словарь > как показывает название ...

  • 5 как показывает название

    as the title implies/indicates/shows

    Русско-английский словарь по общей лексике > как показывает название

  • 6 как показывает название

    Русско-английский синонимический словарь > как показывает название

  • 7 как показывает название (книги и т . п.) ...

    Makarov: as the title indicates, as the title suggests

    Универсальный русско-английский словарь > как показывает название (книги и т . п.) ...

  • 8 название

    (= имя, наименование) name, title
    Как видно из названия... - As its name indicates,...; As the name suggests,...
    Как вытекает из самого названия... - As its name implies,...
    Как показывает название, публикация изначально... - The publication, as the title implies, is primarily concerned with...
    Название "А... " объясняется тем, что... - The name "A... " arose from the fact that...; The name "A... " was derived from...
    Эта функция настолько часто встречается, что мы дадим ей специальное название. - This function is so common that we give it a special name.

    Русско-английский словарь научного общения > название

  • 9 название

    ср.
    name; appellation; title (книги)

    под названием — by/under the name

    Название этому метеориту дано по той местности, где он был обнаружен, — This meteorite is called after the area where it was found.

    название происходит — the name derives from..., the name arose from...

    географическое название — geographical name, place-name

    как показывает название — as the title implies/indicates/shows

    носить общее название — to be collectively called, to be referred to collectively (as)

    носить различные названия — to bear different names; to go under various names

    Русско-английский словарь по общей лексике > название

  • 10 Предисловие

    В связи с растущим числом всевозможного рода международных конференций, совещаний и форумов роль перевода неизмеримо возросла.
    Вопросы организации труда переводчика, его деловые качества, методы подготовки к работе на совещаниях, охватывающих самую разнообразную тематику, приобрели чрезвычайно большое значение.
    Опыт участия в работе таких конференций показывает, что, несмотря на все многообразие употребляемой на них терминологии, существует определенный круг лексики, которая постоянно используется в работе переводчика-международника. В большинстве случаев эту лексику составляют эквиваленты, т. е. постоянные и равнозначные соответствия, не зависящие от контекста. В процессе передачи сообщения с одного языка на другой переводчик выступает в роли посредника, и успешное выполнение этой функции предполагает умение исключительно быстро сопоставить две языковые системы, оперируя целыми языковыми единицами. Сопоставление двух языковых систем, требующее мгновенного переключения мышления с иностранного языка на родной и наоборот, возможно только на базе хорошего знания и автоматизированного употребления языковых эквивалентов.
    Переводчик не может постоянно помнить языковые эквиваленты из всех областей человеческих знаний. При подготовке к той или иной конференции ему приходится освежать в памяти или заучивать заново соответствующие языковые единицы. Настоящий справочник включает языковые эквиваленты первой необходимости, с которыми может встретиться переводчик-международник, независимо от своей узкой специальности и, в первую очередь, при организации и проведении международных совещаний, переговоров и встреч. Помимо знания эквивалентов переводчик-международник должен представлять себе условия, в которых ему придется работать, а также в общих чертах знать особенности видов перевода, наиболее часто встречающихся в практике.
    В каких условиях протекает работа переводчика и как лучше себя к ней подготовить?
    Работа письменного переводчика на международных конференциях отличается, прежде всего, тем, что он не связан очень сжатыми сроками. Часто до начала мероприятия, в течение подготовительного периода, ему приходится принимать участие в переводе переписки, связанной с созывом совещания и иными организационными моментами, приглашением участников и наблюдателей, выработкой повестки дня и т. д.
    На этом этапе переводчику предоставляется возможность ознакомиться с уставами и иными программными материалами организации, со структурой ее руководящих и рабочих органов, с основными этапами ее деятельности, с официальными документами, выступлениями и заявлениями, протоколами и т. д. Очень важно, чтобы переводчик ознакомился со всем этим материалом на двух языках, с которыми он работает: таким образом, он сможет получить полное представление о применяемой данной организацией или на данного рода мероприятиях терминологии и фразеологии. Переводчик должен самым строгим образом следовать принятой традиции, ни в коем случае не допуская никакой вольной, неапробированной интерпретации. Работая с документами (почерпнутыми в справочниках, бюллетенях и архивах) он должен составить себе двуязычный словарь-картотеку, который послужит ему основным пособием в работе.
    Разумеется, переводчик не всегда будет иметь достаточно времени для такой углубленной работы - в этом случае ему придется довольствоваться ознакомлением только с самыми важными и новыми материалами, либо воспользоваться такими общедоступными источниками информации как справочно-энциклопедическая литература.
    Помимо трудностей, связанных со спецификой деятельности и структуры обслуживаемой организации, переводчик может встретить также затруднения, вызванные недостатком специальных и терминологических знаний обсуждаемого предмета. Это касается прежде всего научно-технических конгрессов, семинаров и симпозиумов. Переводчик, естественно, не может быть универсалом, "ходячей энциклопедией", и лучше всего, если он в течение определенного времени специализируется в одной области науки или техники. Но дело в том, что переводчик-международник, в отличие от так называемого "технического переводчика", как правило, лишен такой возможности. Поэтому он должен стремиться к постоянному расширению своих знаний во всех важнейших областях: ему необходимо систематически читать научно-популярную литературу, преимущественно на своих рабочих языках, и по возможности больше запоминать (или записывать в блокноты, на карточки и т. п.). Важно не только "знать", т. е. помнить термины и их соответствия на другом языке, но и понимать их, с тем чтобы быть в состоянии общедоступно разъяснить их. Последнее особенно важно и ценно для переводчика по следующей причине. В ходе перевода могут встретиться термины, понятные ему по значению, соответствия которых он, однако, не знает. В этом случае ему поможет умение описательно передавать значения терминов. Особенно это важно, конечно, для устного переводчика.
    Работая над материалом предстоящей конференции или готовясь к участию в ее заседаниях в качестве устного переводчика, переводчик, несомненно, должен стремиться пополнить свои знания в области обсуждаемой тематики. Устный переводчик в отличие от письменного переводчика, который мог бы просто воспользоваться соответствующими отраслевыми словарями в ходе самого перевода, естественно, не имеет этих возможностей, и качество его работы целиком зависит от степени его предварительной подготовки. Такая подготовка должна слагаться из двух элементов: во-первых, необходимо по тематическим справочникам, энциклопедиям, общедоступным учебникам и пособиям (на двух языках) ознакомиться с предметом, и во-вторых, изучить все имеющиеся материалы (тезисы докладов, проекты документов) и на основе имеющихся переводов или вспомогательных пособий постараться решить все терминологические проблемы. Результаты этих усилий должны войти в "архив памяти" переводчика.
    Устный переводчик (interpreter) в отличие от письменного (translator) работает в ходе конференции, совещания, переговоров и т. п. в совершенно специфических условиях. В соответствии с этим различают несколько видов устной переводческой работы, обычно обозначаемых терминами: двусторонний перевод (two-way interpretation), последовательный перевод (consecutive interpretation) и синхронный перевод (simultaneous interpretation).
    При двустороннем переводе переводчик является посредником между двумя собеседниками (или сторонами).
    Подобная ситуация является естественной для устной речевой деятельности вообще, и поэтому переводчик без специальных психологических усилий "втягивается" в свою работу. Вопрос и ответ взаимосвязаны, развитие беседы, переход от одной темы к другой происходит как бы "на глазах" переводчика, поэтому он всегда "в курсе", что, естественно, облегчает его задачу. Однако в то же время именно двусторонний перевод требует особой точности в передаче вопросов и высказываний, так как при малейшем отклонении от истины перевод из средства общения превращается в препятствие для общения, и беседа может "зайти в тупик". Большое значение имеет в двустороннем переводе постоянство соответствий, передающих одни и те же формулировки собеседников, а также соблюдение различий, намеренно акцентируемых участниками беседы. Не приходится, конечно, говорить, что и сохранение стилистической (эмоциональной) окраски речи, передача таких нюансов, как недоумение, удивление, недовольство, сомнение, недоверие и прочее играют огромную роль при переводе диалога, в котором часто, как гласит французская пословица, "тон делает музыку". Ясно, что помимо самого полного знания предмета, от переводчика требуется безукоризненное владение языком: его словарным составом, фразеологией и, конечно, всеми его фонетическими, интонационными и выразительными средствами. Следует, однако, предупредить, что не только чрезмерная скованность, но и слишком большая свобода отрицательно сказываются на работе переводчика. Слишком свободно чувствующий себя переводчик подчас "выпадает из роли": он перестает ощущать себя переводчиком и, сам того не сознавая, превращается в активного участника беседы.
    Под последовательным переводом принято понимать такой перевод, при котором переводчик, переводящий выступление, речь, доклад, лекцию (т. е. вообще монологическую речь), делает перевод после того, как закончилось выступление или его часть, то есть он говорит после оратора. Здесь возможны различные случаи. Порой оратор произносит заранее подготовленный текст, письменный перевод которого затем зачитывается переводчиком. Это, собственно говоря, не перевод, а чтение, и никаких специфических переводческих трудностей здесь нет. Иная ситуация создается, когда оратор читает текст, который он лишь после окончания речи передает переводчику. В этом случае переводчик переводит "с листа". Перевод с листа предполагает умение молниеносно схватывать глазами целые куски текста, незамедлительно находить нужные эквиваленты и передавать их в соответствующем обстановке оформлении, т. е. с громкостью, артикуляцией, интонацией и темпом, характерными для ораторской речи.
    В огромном большинстве случаев последовательный перевод - это ничто иное, как перевод на слух, при котором переводчик сначала фиксирует услышанное в памяти, а затем передает его содержание на другом языке. Нередко оратор прерывает свою речь после каждой фразы, а то и на середине фразы, чтобы дать возможность переводчику тут же перевести сказанное. Но в более ответственных случаях переводчик, как правило, находится в менее благоприятном положении, так как оратор, которому необходимо высказать нечто важное и сложное, не может каждые несколько секунд прерывать ход своих мыслей - это просто неестественно. Кроме того, как правило, некоторая часть аудитории слушает выступление в оригинале, а отрывочная речь не способна создать у слушателя цельного впечатления о предмете выступления и точке зрения говорящего. Оратор может говорить долго - до нескольких десятков минут - без перерыва. Переводчику же представляется запомнить, точнее зафиксировать все услышанное с максимальной точностью и притом так, чтобы "без запинки" передать все сказанное на другом языке. Кроме тренированной памяти для этого требуется особый навык, так называемая переводческая скоропись.
    На мероприятиях с большим числом рабочих языков (от трех и выше) использование последовательного перевода потребовало бы огромной траты времени, так как каждое выступление пришлось бы переводить по несколько раз подряд. Поэтому прибегают к помощи синхронного перевода. Как показывает название, этот перевод происходит одновременно с речью оратора. Элементарной формой синхронного перевода является так называемое "нашептывание". Переводчик, сидя в зале или за круглым столом около "своей" делегации и слушая оратора, вполголоса, чтобы, не мешать другим, передает содержание услышанного. Такой перевод, естественно, весьма несовершенен и применяется только там, где можно ограничиться общей информацией.
    Полное развитие синхронный перевод получил только после создания соответствующих технических средств. В настоящее время международные мероприятия проводятся в специально оборудованных помещениях, обеспечивающих каждому участнику возможность по своему выбору слушать перевод на любой из рабочих языков через наушники, которые подключены к системе синхронного перевода зала или к миниатюрным приемникам, настроенным на волну специального передатчика малой мощности, транслирующего перевод по нескольким каналам.
    Переводчик находится в звуконепроницаемой кабине и слушает речи с трибуны через наушники. Перед ним находится микрофон, через который его перевод поступает в систему усиления. В ходе подготовки к работе переводчик должен опробовать оборудование, ознакомиться с правилами его обслуживания (научиться пользоваться регуляторами громкости, переключателями языков, кнопками сигнализации и т. д.). Синхронный перевод, как и последовательный, может производиться и с текстом и без текста, но во всех случаях переводчику необходимо внимательно следить за речью оратора, поскольку всегда возможны отклонения от заранее подготовленного текста.
    Синхронный переводчик должен полагаться только на себя, никакой помощи он в ходе работы ни от кого получить не может, поэтому очень важно, чтобы перед началом работы он основательно подготовился по обсуждаемой тематике и проделал достаточное количество "тренировок-репетиций". Такие "репетиции", проводимые в помещении предстоящей конференции при участии представителей подготовительного органа, дают переводчику возможность не только освоить оборудование и обрести своего рода "спортивную форму", но также помогают ему "мобилизовать" свой запас языковых знаний и отобрать в "оперативный резерв" именно то, что потребуется при работе на данном мероприятии. В ходе "репетиций" переводчики контролируют, "подстраховывают" друг друга и совместно обсуждают возникающие трудности. На этом этапе рекомендуется широко применять всевозможные виды вспомогательных пособий и в том числе и настоящий справочник.
    В разработке русской части предлагаемого вниманию читателя Справочника принимали участие X. К. Баранов, С. А. Гонионский, Ю. А. Добровольская, Б. С. Исаенко, Р. К. Миньяр-Белоручев, В. И. Тархов и М. Я. Цвиллинг. Общая редакция осуществлена проф. С. А. Гонионским.
    Все критические замечания и предложения о данном справочнике следует направлять по адресу: Москва, И-90, 4-я Мещанская ул., д. 7, Издательство "Международные отношения".

    Русско-английский справочник переводчика-международника > Предисловие

  • 11 имя

    (= название, наименование) name, noun
    (Переменной) дается специальное имя. - A special name is given to...
    Публикация, как показывает само ее название... - The publication, as the title implies, is primarily concerned with...
    Эффект... назван по имени его первооткрывателя. - The... effect is named for its discoverer.

    Русско-английский словарь научного общения > имя

  • 12 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 13 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 14 Употребление неопределённого артикля

    Неопределённый артикль ein, eine исторически развился из неопределённого местоимения, которое, в свою очередь, восходит к числительному „один“. Он стоит перед существительным в единственном числе, которое обозначает один из нескольких имеющихся предметов, и этот предмет в данной ситуации невозможно однозначно определить (идентифицировать). Неопределённый артикль употребляется:
    1. Если существительное упоминается впервые и о нём отсутствует всякая информация:
    Dort steht eine Frau. Ich kenne sie nicht. - Там стоит (какая-то) женщина. Я не знаю её.
    Ein Mann betrat das Zimmer. Ich sah ihn zum ersten Mal. - (Какой-то) мужчина вошёл в комнату. Я впервые видел его.
    2. Если говорящий имеет в виду один из множества одинаковых предметов, всё равно какой (= irgendein(e):
    Gib mir bitte eine (= irgendeine) Zeitung, damit keine Farbe auf den Boden tropft. - Дай мне (какую-нибудь) газету, для того чтобы краска на пол не капала.
    3. Если говорящий (пока (что)) отказывается идентифицировать предмет или (ещё) сам не может идентифицировать его:
    Ein Mann hat nach dir gefragt. Ich weiß aber nicht, wer er war und was er wollte. - (Какой-то) человек спрашивал тебя. Я не знаю, кто это был и чего он хотел.
    Ich will ein Handy kaufen. - Я хочу купить мобильный телефон.
    4. Если говорящий для себя определил или может определить предмет, но (пока) не хочет, считает ненужным или неуместным определять его для собеседника. В этом случае замена артикля на irgendein(e) невозможна, а замена на dieser/jener, jeder, mein исключена:
    Ich habe auch ein Handy. - У меня также есть мобильный телефон.
    In Leipzig habe ich einen Bekannten. - В Лейпциге у меня есть знакомый. - Ich erwarte einen Anruf. - Я жду телефонного звонка.
    5. Если говорящий не знает, имеется ли вообще в данной коммуникативной ситуации предмет, который ему нужен. Артикль можно заменить на irgendein(e):
    Ist unter Ihnen ein Arzt? - Есть ли среди вас врач?
    Ich habe lange nach einem deutsch-chinesischen Wörterbuch gesucht, aber ich habe keins gefunden. - Я долго искал (какой-нибудь) немецко-китайский словарь, однако никакого не нашёл.
    Wo ist hier ein Telefon? - Где здесь есть телефон?
    Если речь идёт о нескольких предметах из множества одинаковых, то употребляется нулевой артикль. Его можно заменить на  einige, mehrere, etliche:
    Sind unter Ihnen Ärzte? - Есть ли среди вас врачи?
    Junge Leute haben nach Ihnen gefragt. - Вас спрашивали (какие-то) молодые люди.
    6. Если существительное, обозначающее в определённой ситуации единственный в своём роде предмет, в данной ситуации таковым не является или употребляется в качестве имени нарицательного (ср. 1.1.3(1), п. 3, с. 6):
    Kannst du eine Sonne malen? - Ты можешь нарисовать солнце?
    In Leipzig gibt es auch eine Talstraße. - В Лейпциге также есть Тальштрассе.
    In Nowgorod gibt es auch einen Kreml. - В Новгороде также есть Кремль.
    Bei uns arbeitet auch eine Uta Schneider. - У нас тоже работает Ута Шнайдер.
    Но: Mit dieser Kamera kann man sogar die Sonne fotografieren. - Этим фотоаппаратом можно фотографировать даже солнце.
    7. Если невозможно однозначно идентифицировать предмет исходя из его отношения к другому предмету:
    Но: Auf dem Boden lag der Schutzumschlag eines Buches. - На полу лежала обложка книги (так как обложка, как правило, одна).
    8. Если в коммуникативной или иной ситуации один предмет или событие по отношению к другому предмету или событию нельзя идентифицировать по времени и месту:
    Kannst du dir einen Morgen in einem abgelegenen Dorf vorstellen? - Можешь представить себе (какое-то) утро в (какой-то) отдалённой деревне?
    Но: Der Unfall ereignete sich am Sonntagabend in der Stadtmitte/im Stadtzentrum. - Авария произошла в воскресенье вечером в центре города (конкретного города).
    9. Если определение, выраженное порядковым числительным (см. 1.1.3(1), п. 21, Примечание, п. 1, с. 12), инфинитивной группой или определительным придаточным предложением однозначно не идентифицирует предмет:
    Peter hat beim Sportfest einen zweiten Platz belegt. - Петер на спортивном празднике занял 2-е место (вторых мест было несколько).
    Er hatte plötzlich eine Idee, die ihm niemand zugetraut hätte. - У него вдруг появилась идея, которую от него никто не ожидал.
    Но: Peter hat beim 100-Meter-Lauf den zweiten Platz belegt. - Петер занял второе место в беге на 100 метров.
    Er hatte plötzlich die Idee, ins Kino zu gehen. - Вдруг у него возникла идея сходить в кино.
    10. В конструкциях с so ein, ein solcher, solch ein:
    Er hat auch so ein / ein solches/solch ein Buch. - И у него есть такая же книга.
    11. В восклицаниях без сказуемого, как правило, в конструкциях с so ein, was für ein:
    So ein Pech! - Такая неудача!
    Was für ein Pech! - Какая неудача!
    So eine Enttäuschung! - Такое разочарование!
    So ein Dummkopf! - Такой болван!
    12. В похожих восклицаниях, когда в предложении есть сказуемое:
    Das war eine Enttäuschung! - Вот это было разочарование! / Какое это было разочарование!
    Dort herrschte ein Betrieb! - Какое там царило оживление!
    Habe ich einen Durst! - Как хочется пить!
    13. Перед существительным в единственном числе, обозначающим класс предметов, в который включается какой-либо отдельный предмет или целый тип предметов:
    • если в генерализирующем высказывании (ср. п. 37, с. 17) что-либо классифицируется:
    Die Katze ist ein (Haus)tier. - Кошка – это (домашнее) животное.
    • если какой-либо реальный предмет включается в какой-либо класс предметов (можно поставить вопрос: „Was ist das?“):
    Das ist ein Stuhl. - Это стул.
    Das ist ein Buch. - Это книга.
    Dieses Wort ist ein Adjektiv. - Это слово является прилагательным.
    Das Wort „Tisch“ ist ein Substantiv. - Слово „стол“ является существительным.
    Но: Das ist das Badezimmer. - Это ванная комната (например, моя …).
    Также, как правило, в вопросе „Was ist ein (eine)…?“:
    Was ist eine Tiefgarage? - Что такое подземный гараж?
    В ответе на этот вопрос также предпочитается неопределённый артикль:
    Eine Tiefgarage ist eine Garage unter der Erde. - Подземный гараж – это гараж под землёй.
    • если названия лиц используются для квалификации:
    Andreas ist noch ein Kind. - Андреас ещё ребёнок.
    В частности неопределённый артикль стоит перед названиями лиц:
    - если они имеют при себе характеризующее определение:
    Er ist ein guter Lehrer. - Он хороший учитель.
    Но: Er ist Lehrer. - Он учитель (по профессии).
    Er ist ein guter Sportler (Lehrer). - Он хороший спортсмен (учитель).
    Es ist eine schöne Blume. - Это прекрасный цветок.
    Klaus ist ein wahrer/richtiger Freund. - Клаус – настоящий друг.
    - если название профессии употребляется в переносном значении:
    Er ist ein (richtiger) Schauspieler. - Он (настоящий) актёр.
    Но: Er ist (von Beruf) Schauspieler! - Он (по профессии) актёр.
    - если они (названия лиц) содержат в своём лексическом значении характеризующий или оценивающий компонент:
    Er ist für mich ein Vorbild. - Он для меня является примером.
    Du bist ein Lügner ( ein Dummkopf, ein Idiot). - Ты глун (дурак/болван, идиот).
    Sie nannte ihn einen Schurken. - Она назвала его негодяем/мошенником.
    Sein Benehmen war eine Schande. - Его поведение было позором.
    Erika ist noch ein Kind. - Эрика – ещё ребёнок.
    14. В сравнениях с wie и für:
    Sie spricht wie eine Deutsche. - Она говорит, как немка.
    Im Haus war es dunkel wie in einem Keller. - В домее было темно, как в подвале.
    Sie benimmt sich wie eine Xanthippe. - Она ведёт себя, как Ксантиппа/ сварливая жена (разг. – жена Сократа).
    Für einen Ausländer spricht er sehr gut Deutsch. - Для иностранца он очень хорошо говорит по-немецки.
    15. После haben иметь (ср. 1.1.3(3), п. 21, с. 36 – 37), brauchen нуждаться (ср. п. 22, с. 37), es gibt имеется перед существительным, о котором отсутствует информация:
    Er hat einen Sohn (Neffen, Freund). - У него есть сын (племянник, друг).
    Wir brauchen einen Stuhl. - Нам нужен стул.
    Es gibt einen Tisch. - Имеется стол.
    16. После bekommen получать, sich wünschen желать себе, suchen in искать в, если    невозможно однозначно идентифицировать существительное:
    Er bekam einen ausgezeichneten Lehrer. - Ему достался отличный учитель.
    Er wünscht sich immer eine Zigarette. - У него постоянное желание курить.
    Er sucht in ihr eine Hilfe. - Он ждёт от неё помощи.
    17. Если прилагательное не имеет чёткого идентифицирующего лексического значения. Неопределённый артикль употребляется чаще перед следующими прилагательными:
    änlich подобный, beliebig любой, bestimmt (= gewiss) определённый, некоторый, genügend достаточный, ander другой, иной, weiter дальнейший:
    Ich hatte einen ähnlichen Gedanken wie du. - У меня была подобная мысль, как у тебя.
    18. Если существительное имеет определение, благодаря которому оно рассматривается как представитель каково-либо класса (категории); если нет определения, то употребляется определённый или нулевой артикль:
    Er führt ein angenehmes Leben. - Он ведёт приятный образ жизни.
    – Das Leben ist angenehm. – Жизнь приятна.
    Wir haben eine gute Schulleitung. - У нас хорошая дирекция школы.
    Ein Besucher fragte nach dem Zimmer der Schulleitung. – Посетитель спросил, где находится кабинет директора.
    Er trägt eine größere Verantwortung als bisher. - Он несёт сейчас бóльшую ответственность, чем раньше.
    – Er ist gewohnt, Verantwortung zu tragen. – Он привык нести ответственность.
    19. При обобщении перед существительным в единственном числе, когда оно обозначает один предмет из множества одинаковых предметов и характеризует всё это множество:
    • в случае экземплярной генерализации (см. 1.1.3(1), п. 36, с. 17):
    Ein Kind kann das doch nicht begreifen. - Ребёнку этого не понять.
    Ein Sonnenuntergang am Meer ist ein großes Erlebnis. - Закат солнца на море – впечатляющее зрелище.
    So kann nur ein Bär brummen. - Так рычать может только медведь.
    Ein Haus kostet hier viel Geld. - Дом стóит здесь много денег.
    • если выражается обобщенное значение в случае типизирующей/эффективно-дистрибутивной генерализации, то возможен определённый артикль:
    Der Student muss fleißig sein. - Студент должен быть прилежным.
    20. Если существительное выражает обобщенное значение, чаще всего стереотипное, по поводу неправильного поведения:
    Ein Mädchen kaut nicht an den Finger-nägeln! - Девушка ведь не грызёт ногти!
    Ein Mann weint nicht! - Мужчина не плачет!
    Ein Vater muss auch streng sein können. - Отец должен уметь быть и строгим.
    Ein Feuerzeug ist nichts für Kinder. - Зажигалка – это не для детей.
    21. Перед названием группы людей, представителя какого-нибудь народа, животных, предметов, о которых выражается обобщенное (стереотипное и часто неверное) мнение:
    Eine Frau fährt schlechter Auto als ein Mann. - Женщина водит машину хуже мужчины.
    Einem Zigeuner liegt die Musik im Blut. - У цыгана музыка в крови.
    Ein Tier ist eben dumm. - Животное – глупое существо.
    22. Перед именами собственными писателей, художников, музыкантов и т.д., обозначающими их произведения, если нет однозначной идентификации:
    Dieses Bild ist ein Rembrandt ( ein Picasso). - Это – Рембрандт (Пикассо).
    In der Galerie ist auch ein echter Rubens zu sehen. - В галерее можно увидеть подлинную картину/подлинные картины Рубенса.
    Jetzt spielt das Orchester einen Mozart. - Сейчас оркестр исполняет Моцарта.
    Но: Er betrachtete lange den Raffael. - Он долго рассматривал (картину) Рафаэля.
    Sie liest den Ovid. - Он читал (римского поэта) Овидия.
    23. Перед именами собственными, которые употребляются в переносном смысле как имена нарицательные и обозначают категорию, разряд, вид и т.д.:
    Dieser Wagen ist ein Diesel. - Этот автомобиль – дизель.
    Das ist ein Duden. - Это „Дуден“.
    Также перед именами, которые обозначают марку (в том числе и торговую) (ср. 1.1.3(1), п. 29, с. 15), если отсутствует однозначная идентификация:
    Ich habe einen neuen Duden gekauft. - Я купил новый „Дуден“.
    24. Перед именами собственными, если говорящий показывает свою неосведомлённость:
    Jemand hat nach einer Uta Otto gefragt. - Кто-то спрашивал (какую-то) Уту Отто.
    Arbeitet bei Ihnen auch ein (gewisser) Klaus Fehlinger? - У вас тоже работает некий (некто) Клаус Фелингер?
    Ich soll mich an einen Dr. Mähl wenden. - Мне надо обратиться к (какому-то) доктору Мель.
    25. Если название профессии употребляется в переносном значении в классифицирующих предложениях (ср. 1.1.3(3), п. 2, с. 28):
    Er ist ein (richtiger) Schauspieler. - Он прямо-таки (настоящий) актёр.
    Du bist ja ein Künstler! - Да ты просто мастер (своего дела)!
    Но: Er ist (von Beruf) Künstler! - Он (по профессии) художник.
    26. В конструкции haben + существительное в аккузативе (Breite ширина, Fläche площадь, Gewicht вес, Größe величина, Höhe высота, Tiefe глубина, Umfang объём, Preis цена, Wert стоимость )  + von + количественное числительное + единица измерения:
    Der Berg hat eine Höhe von 1240 Metern. - Гора имеет высоту 1240 метров.
    Der Fluss hat eine Tiefe von 15 Metern. - Река имеет глубину 15 метров.
    а) Если в такой конструкции перед существительным имеется дополнение в виде прилагательного, обозначающего высокую степень качества, употребляется определённый артикль:
    Der Kirchturm hat die beachtliche Höhe von 100 Metern. - Колокольня имеет (довольно) большую высоту, равную 100 метрам.
    б) Если величина даётся не в цифрах, то употребляется определённый артикль:
    Das Schiff hat die Höhe eines mehrstöckigen Gebäudes. - Судно имеет высоту многоэтажного здания.
    Klaus hat die Größe seines älteren Bruders erreicht. - Клаус стал такого же роста, как и его старший брат.
    в) С другими глаголами возможен и определённый артикль:
    Der Berg erreicht eine/die Höhe von 1240 Metern. - Гора достигает высоты 1240 метров.
    Er bezahlt dafür einen/den Preis von 9 Euro. - Он платит за это цену в 9 евро.
    Er spendete eine/die Summe von 200 Euro. - Он пожертвовал сумму в 200 евро.
    27. Если после существительного стоит придаточное определительное предложение, то неопределённый артикль придает слову значение неопределённости (его можно заменить на so ein, ein solcher, ein derartiger такой, такого рода):
    Heute ist ein Tag, auf den ich mich schon lange gefreut habe. - Сегодня (такой) день, которого я давно уже с радостью ждал.
    Das war ein Abend, wie sie sich ihn schon lange gewünscht hatte. - Это был (такой) вечер, о котором она уже давно мечтала.
    Er ist ein Mensch, der besonnen handelt. - Он (такой) человек, который поступает осмотрительно/осторожно.
    Ich möchte einen Wein, der nicht so süß ist. - Я хотел бы (такое) вино, которое не было бы таким сладким.
    Определённый артикль конкретизирует существительное:
    Heute ist der Tag, auf den ich mich schon lange gefreut habe. - Сегодня настал (тот) день, которого я давно уже с радостью ждал.
    Das war der Abend, an dem sie ihn kennen gelernt hatte. - Это был (тот) вечер, когда она познакомилась с ним.
    28. В ряде сочетаний функционального глагола с существительным (Funktionsverbgefüge = FVG) (см. 2.11.8). При этом существительное, входящее в это сочетание, может:
    • стоять в аккузативе или дативе без определения (см. 2.11.8, с. 205 - 209):
    ein Ende machen / setzen - покончить с чем-либо
    • стоять в аккузативе с определением, при этом этим определением может быть:
    - предложное дополнение (см. 2.11.8, с. 205 - 209):
    eine Vorliebe für etwas haben - иметь пристрастие к кому-либо, чему-либо
    - прилагательное, однозначно не идентифицирующее существительное:
    - придаточное определительное предложение, которое не идентифицирует однозначно существительное:
    einen Ausgang nehmen, den niemand erwartet hat - иметь окончание, которого никто не ожидал
    Многие существительные в сочетаниях с функциональными глаголами (FVG) могут:
    * употребляться с определённым, неопределённым или нулевым артиклем. При этом необходимо запоминать, в каком случае употребляется тот или иной артикль;
    * в некоторых случаях иметь варианты: неопределённый или нулевой артикль:
    Необходимо помнить, что чаще всего в сочетаниях (FVG) неопределённый артикль перед существительным не может быть заменён каким-либо словом.
    29. В некоторых фразеологических выражениях:
    • перед существительным, которое как единственный предмет из всей группы предметов характеризует всю эту группу (экземплярная генерализация):
    einen Besen fressen - провалиться на этом месте, если …
    einen Bock schießen - оплошать, дать маху (разг.)
    • часто при сравнении с wie:
    • перед существительным, которое обозначает (любой) отдельный предмет, который нельзя однозначно идентифицировать:
    1. В редких случаях во фразеологизмах может употребляться неопределённый и определённый артикль:
    in eine /(реже) die Sackgasse geraten - попасть/зайти в тупик
    2. Фразеологизмы – это сочетания слов, которые уже существуют в языке и используются как готовый материал. Это касается и употребления артикля. Артикль во фразеологизмах твёрдо лексикализирован. В подобных нефразеологических конструкциях может употребляться другой артикль или вообще отсутствовать, поэтому артикль должен запоминаться вместе с фразеологизмом.
    30. В некоторых пословицах и поговорках:
    • в случаях экземплярной генерализации:
    Einen alten Baum verpflanzt man nicht. - Старое дерево нельзя пересаживать. (Эта пословица поучает, что старого человека не следует вырывать из привычной ему обстановки.)
    Ein froher Gast ist niemand Last. - Желанный гость – никому не обуза.
    Aus einer Gans wird kein Adler. - Рождённый ползать летать не может.
    • перед существительным, обозначающим (любой) отдельный предмет, который нельзя однозначно идентифицировать:
    Es hat noch kein Spiegel einer Frau gesagt, dass sie hässlich ist. - Ещё ни одно зеркало не сказало женщине, что она некрасива (букв.).
    Wer den Teufel zum Freund haben will, der zündet ihm ein Licht an. - Кто хочет взять чёрта/дьявола в друзья, тот зажигает ему свет (букв.).

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > Употребление неопределённого артикля

  • 15 дифференциальный манометр

    1. Differenzdruckmessgerät

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > дифференциальный манометр

  • 16 дифференциальный манометр

    1. differential-pressure gage
    2. differential pressure indicator
    3. differential pressure gage
    4. differential manometer
    5. differential gauge pressure

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дифференциальный манометр

  • 17 дифференциальный манометр

    1. manometre differentile

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > дифференциальный манометр

  • 18 производственная функция

    1. production function

     

    производственная функция
    Описание возможных вариантов продуктов системы, в зависимости от различных видов исходных компонентов системы
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    производственная функция
    функция производства
    ПФ

    Экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов производства на объем выпуска в определенный момент времени (статический вариант) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант) на различных уровнях экономики — от фирмы (предприятия) до народного хозяйства в целом (агрегированная ПФ, в которой «выпуском» служит показатель совокупного общественного продукта или национального дохода и т.п.). В отдельной фирме, корпорации и т.п. ПФ описывает максимальный объем выпуска продукции, которую они в состоянии произвести при каждом сочетании используемых факторов производства. Она может быть представлена группой изоквант, связанных с различными уровнями объема производства. Такой вид ПФ, когда устанавливается зависимость объема производства продукции от наличия или потребления ресурсов, называется функцией выпуска. В частности, широко используются функции выпуска в сельском хозяйстве, где с их помощью изучается влияние на урожайность таких факторов, как, например, разные виды и составы удобрений, методы обработки почвы. Наряду с подобными ПФ используются как бы обратные к ним функции производственных затрат. Они характеризуют зависимость затрат ресурсов от объемов выпуска продукции (строго говоря, они обратны только к ПФ с взаимозаменяемыми ресурсами). Частными случаями ПФ можно считать функцию издержек (связь объема продукции и издержек производства), инвестиционную функцию (зависимость потребных капиталовложений от производственной мощности будущего предприятия) и др. Математически ПФ могут быть представлены в различных формах — от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма сложных систем уравнений, включающих рекуррентные соотношения, которыми связываются состояния изучаемого объекта в разные периоды времени. Наиболее широко распространены мультипликативные формы представления ПФ. Их преимущество состоит в следующем: если один из сомножителей равен нулю, то результат обращается в нуль. Легко заметить, что это реалистично отражает тот факт, что в большинстве случаев в производстве участвуют все анализируемые первичные ресурсы и без любого из них выпуск продукции оказывается невозможным. В самой общей форме (она называется канонической) эта функция записывается так: или Здесь коэффициент А, стоящий перед знаком умножения, означает размерность, он зависит от избранной единицы измерений затрат и выпуска. Сомножители от первого до n-го могут иметь различное содержание в зависимости от того, какие факторы оказывают влияние на общий результат (выпуск). Например, в ПФ, которая применяется для изучения экономики в целом, можно в качестве результативного показателя принять объем конечного продукта, а сомножителей — численность занятого населения x1, сумму основных и оборотных фондов x2, площадь используемой земли x3. Только два сомножителя у функции Кобба — Дугласа, с помощью которой была сделана попытка оценить связь таких факторов, как труд и капитал, с ростом национального дохода США в 20-30- гг. ХХ века: N = A • L? • K?, где N — национальный доход, L и K — соответственно, объемы приложенного труда и капитала (подробнее см.: Кобба — Дугласа функция). Степенные коэффициенты (параметры) показывают ту долю в приросте конечного продукта, которую вносит каждый из сомножителей (или на сколько процентов возрастет продукт, если затраты соответствующего ресурса увеличить на один процент); они называются коэффициентами эластичности производства относительно затрат соответствующего ресурса. Если сумма коэффициентов составляет единицу, это означает однородность функции: она возрастает пропорционально росту количества ресурсов. Но возможны и такие случаи, когда сумма параметров больше или меньше единицы; это показывает, что увеличение затрат приводит к непропорционально большему или непропорционально меньшему росту выпуска (см. Эффект масштаба). В динамическом варианте применяются разные формы П.Ф. Например (в 2-х-факторном случае): Y(t) = A(t) La(t) Kb(t), где множитель A(t) обычно возрастает во времени, отражая общий рост эффективности производственных факторов в динамике(См. Совокупная факторная продуктивность). Логарифмируя, а затем дифференцируя по t указанную функцию, можно получить соотношения между темпами прироста конечного продукта (национального дохода) и прироста производственных факторов (темпы прироста переменных принято здесь описывать в процентах). Дальнейшая “динамизация” ПФ может заключаться в использовании переменных коэффициентов эластичности. Описываемые ПФ соотношения носят статистический характер, т.е. проявляются только в среднем, в большой массе наблюдений, поскольку реально на результат производства воздействуют не только анализируемые факторы, но и множество неучитываемых. Кроме того, применяемые показатели как затрат, так и результатов неизбежно являются продуктами сложного агрегирования (например, обобщенный показатель трудовых затрат в макроэкономической функции вбирает в себя затраты труда разной производительности, интенсивности, квалификации и т.д.). Особая проблема — учет в макроэкономических ПФ фактора технического прогресса (подробнее см. в статье «Научно-технический прогресс»). С помощью ПФ изучается также эквивалентная взаимозаменяемость факторов производства (см. Эластичность замещения ресурсов), которая может быть либо неизменной, либо переменной (т.е. зависимой от объемов ресурсов). Соответственно функции делят на два вида: с постоянной эластичностью замены, CES (Constant Elasticity of Substitution) и с переменной, VES (Variable Elasticity of Substitution) (см. ниже). На практике применяются три основных метода определения параметров макроэкономических ПФ: на основе обработки временных рядов, на основе данных о структурных элементах агрегатов и о распределении национального дохода. Последний метод называется распределительным. При построении ПФ необходимо избавляться от явлений мультиколлинеарности параметров и автокорреляции — без этого неизбежны грубые ошибки. • Приведем некоторые важные П. ф. (см. также Кобба — Дугласа функция). Линейная производственная функция: P = a1x1 + … + anxn, где a1, … an — оцениваемые параметры модели: здесь факторы производства, замещаемые в любых пропорциях. Производственнаяфункция CES (constant elasticity of substitution): P = A [(1 — a) K-в + aL-в] -c/в, в этом случае эластичность замещения ресурсов не зависит ни от K, ни от L и, следовательно, постоянна: Отсюда и происходит название функции. Функция CES, как и функция Кобба — Дугласа, исходит из допущения о постоянном убывании предельной нормы замещения используемых ресурсов. Между тем, эластичность замещения капитала трудом и наоборот, в функции К-D равная единице, здесь может принимать различные значения, не равные единице, хотя и является постоянной. Наконец, в отличие от функции K-D, логарифмирование функции CES не приводит ее к линейному виду, что вынуждает использовать для оценки параметров более сложные методы нелинейного регрессионного анализа. Производственная функция VES (variable elasticity of substitution) (один из вариантов): P = Aeat ? Ka ? L b ? exp [c (K/L)] Здесь эластичность замещения принимает различные значения в зависимости от уровня капиталовооруженности труда K/L, откуда и происходит название функции. См. также: Взаимозаменяемость ресурсов, Изокоста, Изокванта, Изоклиналь, Кобба — Дугласа функция, Коэффициент эластичности производства, Предельная норма замещения, Предельные издержки, Предельный эффект затрат, Предельный продукт, Факторная производительность (продуктивность), Эластичность замещения ресурсов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > производственная функция

  • 19 динамические модели межотраслевого баланса

    1. output models
    2. dynamic input

     

    динамические модели межотраслевого баланса
    Частный случай динамических моделей экономики; основаны на принципе межотраслевого баланса, в который дополнительно вводятся уравнения, характеризующие изменения межотраслевых связей во времени на основе отдельных показателей, например, капитальных вложений и основных фондов (что позволяет создать преемственность между балансами отдельных периодов). Единообразного метода решения этой задачи пока нет. В принципе она может решаться следующим образом (при условии, что в динамической межотраслевой модели, как и в статическом МОБ, связи принимаются линейными). В отличие от уравнений статического МОБ, где конечный продукт каждой отрасли представлен одним слагаемым, здесь он распадается на два — фонд накопления и фонд непроизводственного потребления. Система уравнений в этом случае записывается так: (i=1, 2, …, n, j=1, 2, …, n), где Mi — часть продукции i-й отрасли, идущая в фонд накопления (она не может быть равна нулю только в так называемых фондообразующих отраслях — строительстве, машиностроении); wi — часть продукции i-й отрасли, выделяемая на непроизводственное потребление (остальные обозначения см. в статье Межотраслевой баланс). Такие модели с разделением конечного продукта называются «моделями леонтьевского типа» (по имени американского экономиста В. Леонтьева). Ту часть фонда накопления, которая передается «фондообразующей отраслью» i в j-ю отрасль, обозначим Mij. Тогда общий объем капитальных вложений, направляемых в j-ю отрасль, определяется по формуле Отсюда, зная коэффициент фондоотдачи в j-й отрасли, можно вычислить прирост ее валовой продукции. Таким образом, получаем описание цикла воспроизводства (обычно за один год) - от создания фондов до выявления возросших в результате их использования производственных возможностей. Конечно, здесь допущено много нереалистичных упрощений (например, новые средства производства «немедленно» дают продукцию, тогда как в действительности для этого требуется существенный лаг). Но модель показывает, что для управления процессом решающее значение имеет соотношение между фондом накопления и фондом потребления конечной продукции. Отечественными экономистами были разработаны разные типы динамических межотраслевых моделей, в том числе более сложные, но зато и более адекватно описывающие динамику экономического развития (хотя и здесь еще упрощения существенны). Во-первых, модели с обратной рекурсией, в которых балансы производства и распределения продукции за последний год планового периода сочетаются с уравнениями потребности в капитальных вложениях за весь плановый период. На втором этапе решения такой модели показатели производства продукции и капитальных вложений распределяются по всем годам планового периода в направлении от последнего года к первому (откуда и название модели). Во-вторых, модели поэтапного расчета объемов производства продукции и капитальных вложений для каждого года планового периода. Они представляются обычно как совокупность балансов производства продукции и капитальных вложений, потребность в которых для будущих лет устанавливается путем нормирования незавершенного строительства. В-третьих, модели с явным учетом лага капитальных вложений, в которых показана прямая и обратная их связь во времени с показателями производства продукции. С одной стороны, объемы продукции отраслей, создающих средства производства («фондосоздающих»), зависят от тенденций развития производства в будущем. С другой стороны, потребность в приросте фондов в данном году во многом зависит от их динамики в прошлом. Модели с явным учетом лага капитальных вложений точнее других отражают процессы воспроизводства, но они и сложнее по структуре. Кроме того, их трудно обеспечить необходимой информацией. Укрупненная 18-отраслевая динамическая модель МОБ практически применялась бывш. Госпланом СССР при разработке наметок основных показателей долгосрочного социального и экономического развития страны. Расчеты по этой модели отражали физический рост объемов производства и отраслевое распределение производственных ресурсов (капитальные вложения, численность занятых, структура материального производства, распределение продукции отдельных отраслей для текущего производственного потребления, производственного и непроизводственного накопления, непроизводственное потребление, внешнеторговый оборот и т.д.). В стране, отказавшейся от централизованного директивного планирования, подобные модели вряд ли найдут применение в прежнем виде. Но вполне возможно их использование в прогнозных и аналитических расчетах — что подтверждается опытом ученых-экономистов в США и других странах.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > динамические модели межотраслевого баланса

  • 20 лӱман

    лӱман
    I
    Г.: лӹмӓн
    1. по имени, именем, названию, кличке, под названием, называемый каким-л. именем, имеющий имя

    Лӱман ял деревня, имеющая название;

    Йыван лӱман по имени Йыван.

    Ожно илен ик кува, тудын улмаш Кокша лӱман эргыже. Т. Евсевьев. Раньше жила одна баба, у неё был сын по имени Кокша.

    Ынде «Эреҥер» лӱман кугу повестьым возем. М. Шкетан. Теперь пишу большую повесть под названием «Эренгер».

    2. с чинами, званиями, имеющий чин, звание, титулованный

    Ынде кок ий лиеш, Ямет лӱман еҥлан шога. Д. Орай. Вот уже два года, как Ямет является человеком, имеющим чин.

    А тушто эртак кугу лӱман офицер-влак шинчат. А. Ягельдин. А там сидят одни офицеры с высокими званиями.

    3. известный, знаменитый; знатный, именитый

    Лӱман учёный известный учёный; учёный с именем.

    Изиш лӱман еҥ лийылдалытат, алал ешыштым, йӧратыме шочшыштым, ача-аваштым кудалтат. Д. Орай. Чуточку становятся известными и бросают милую семью, любимых детей, родителей.

    4. надельная (земля), относящийся к наделу

    Лӱман мландышт шагал, ваш мартен пукшен огыл. Я. Элексейн. Надельной земли было мало, не хватало прокормиться.

    Лӱман аҥа иземмылан кӧра вес шошо кыдалнак кочшаш кинде пытыш. Т. Батырбаев. Из-за того, что уменьшились надельные поля, хлеба хватило только до середины следующей весны.

    5. грам. именной

    Лӱман составной сказуемыйын лӱман ужашыже подлежащийын кӧ, мо але могай улмыжым ончыкта. «Мар. йылме» Именная часть именного составного сказуемого показывает кем, чем или каким является подлежащее.

    II
    с болячками, с коростой, с гнойниками, имеющий болячки, гнойники

    Лӱман коваште кожа с болячками;

    кидше лӱман руки у него в гнойничках.

    с клеем, клейкий, имеющий клей

    Лӱман чия краска с клеем;

    лӱман конверт конверт с клеем.

    Тиде кагаз лӱман. Эта бумага с клеем.

    Марийско-русский словарь > лӱман

См. также в других словарях:

  • Как приручить дракона — How to Train Your Dragon …   Википедия

  • Название Украины — «Украина»  название государства Украина, а также историческое название ряда территорий. Содержание 1 Этимология и употребление слова «Украина» в источниках и литературе …   Википедия

  • Судебный процесс над «Бхагавад-гитой как она есть» — …   Википедия

  • Список серий телесериала «Как я встретил вашу маму» — В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок …   Википедия

  • СПЕЦИФИКА ФИЛОСОФСКОЙ РЕФЛЕКСИИ (первоначальное, авторское название Философия как странная речь) — книга Т.М.Тузовой. Размышляя о ликах и формах современно го философского дискурса и его неоднозначных, конфликтных отношениях с предшествующей философией (метафизикой), автор ставит и обсуждает вопрос о том, что сегодня, в ситуации размывания… …   История Философии: Энциклопедия

  • Вещество как материя — (Matière, Substance, Materie, Stoff, Matter) противополагается по смыслу духу, силе, форме, явлению и пустоте. Такое отрицательное определение, происходящее из древности, не может служить основанием для каких либо научных сведений о В. Наука же… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Дневники принцессы 2: Как стать королевой — Дневники принцессы: Как стать королевой The Princess Diaries: Royal Engagement …   Википедия

  • Элвис: Всё, как есть — Так это происходит That’s The Way It Is …   Википедия

  • Большие мамочки: Сын как отец — Big Mommas: Like Father, Like Son Жанр …   Википедия

  • Златоуст — – как показывает название, сборник, составленный из творений св. Иоанна Златоуста. Подобно Златострую имел большое распространение в древней Руси, но его назначение было не только для домашнего, но и церковного чтения …   Полный православный богословский энциклопедический словарь

  • Семейство Лососевые (Salmonidae) —          К семейству лососевых относятся рыбы, имеющие один настоящий спинной плавник и один жировой. В спинном плавнике бывает от 10 до 16 лучей. Второй, жировой плавник не имеет лучей. У самок яйцеводы зачаточные или вообще отсутствуют, так что …   Биологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»